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A CONTINUUM THEORY OF A DIATOMIC,
ELASTIC DIELECTRIC

R. D. MINDLIN

Department of Civil Engineering, Columbia University, New York, N.Y.

Abstract-The field equations and boundary conditions of the continuum theory of elastic dielectrics, including
the contribution ofthe polarization gradient, are extended to apply to a compound material. A formula is obtained
for the surface energy of deformation and polarization of a cubic crystal. The solution of a problem of plane
waves leads to the identification of transverse and longitudinal optical, as well as acoustical, branches in the
dispersion relation. A one-dimensional model of the NaCl-type crystal lattice of shell-model atoms is constructed
and its finite difference equations of motion are shown to have the corresponding equations of the continuum
theory as their long wave limit, without restriction to low frequency.

1. INTRODUCTION

THE differential equations of the classical theory ofelasticity are known to be the long wave,
low frequency limit of the finite difference equations of the theory of crystal lattices of
mass-particles. If the lattice is a simple one of the Bravais type, with one particle per cell,
there is no distinction between the long wave limit and the long wave, low frequency
limit-as there are no optical branches in the dispersion relations for waves in Bravais
lattices. However, in the case of a compound lattice, which has more than one particle per
cell, there are high frequency optical branches as well as low frequency acoustical branches
at the long wave limit. In that case, classical elasticity accounts for the long wave portions
of only the acoustical branches. It has already been shown [1] how the classical equations
of elasticity can be extended to include the long wave portions of the optical branches in
the case of two particles per cell in a cubic crystal.

The applications now contemplated include those involving electromechanical inter­
actions, so that it is appropriate to incorporate the electronic polarization, in the equations,
in addition to the mechanical displacement. When this is done, the equations become the
extension of the classical theory of elastic dielectrics to include the long wave, high fre­
quency behavior of diatomic, polarizable crystals. Furthermore, even at low frequencies,
wave lengths in the continuum approximation can be short enough and, at both low fre­
quencies and in static equilibrium, dimensions can be small enough, for the effect of the
polarization gradient to be significant. Consequently, the contribution of the polarization
gradient is also included here. The resulting equations are then the extension, to diatomic
materials, of a previous extension [2] of the classical theory of elastic dielectrics to account
for the effects ofthe polarization gradient. At the same time, the equations are the long wave
limit, not restricted to low frequencies, of the equations of a diatomic crystal lattice of
polarizable atoms.

In Section 2, the potential and kinetic energy densities of the compound continuum are
defined and a restriction to linearity is imposed. The field equations and boundary condi­
tions are derived, in Section 3, by means of an extension of a linear version of Toupin's [3]
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variational principle for the equations of the classical theory of elastic dielectrics. This is
followed, in Section 4, by a derivation of the constitutive equations for a special case ofcubic
symmetry. In Section 5, a formula is derived for the surface energy of deformation and
polarization. A problem of plane waves in an infinite medium is solved in Section 6 and the
acoustical and optical branches of the dispersion relations for transverse and longitudinal
waves are identified. A limiting form of the equations, valid at long wave lengths, is
equivalent to equations, given by Born and Huang [4J, leading to a dispersion formula for
the dielectric constant. In the final section, a one-dimensional Cochran-type [5J lattice of
Dick-Overhauser [6J shell-model atoms in an NaCI-type structure is devised and the
associated finite difference equations of motion are formulated. In the long wave limit,
the difference equations of the lattice become the differential equations for longitudinal
optical and acoustical waves in the diatomic continuum.

2. POTENTIAL AND KINETIC ENERGIES

In a continuum theory of a crystal lattice with two atoms per cell, each material point
Xi' i = 1,2,3, is the site oftwo atoms, say 1and 2, as illustrated in Fig. 1. Upon deformation,
the two atoms move, with separate displacements uP) and ul2

) to a single spatial point Xi

at which, if the atoms are polarizable, they take on electronic polarizations ppl and Pj2).
A neighboring pair of atoms, initially at Xi+dX i , has displacements u?)+du~"), K = 1,2,
and polarizations PI") +dPI"). In a linear theory, to which the present treatment is confined,

where the summation convention for repeated indices and the comma notation for deriva­
tive (with respect to Xi) are employed.

Each point Xi may be regarded as being occupied by a point of each of two deformable
and polarizable continua. The stored energy density of deformation and polarization, WL

,

is assumed to be a quadratic function of the small strains, Slj), polarizations, PI"), and

FIG. I. Displacement and polarization in a diatomic continuum.
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polarization gradients, PY:l, of the individual continua, and of the relative displacement,
U{, and relative rotation, wt, of the two continua:

where

WL = WL(S\~) S\~) p\1) p\2) p\l) p(2) u~ w~.)
IJ' IJ' I , I , J~I' ),1' I' I}'

S!j) = t(u~~l + u~~J),

U{ = U!2) - uP),

wt = t(Uj,i - ut)·

(1)

With these variables, W L is invariant in a rigid translation and rotation of the deformed and
polarized body.

If the polarization and polarization gradient were omitted, WL would be the energy
density of a classical, linear, elastic body extended to accommodate a diatomic material [1].
Ifonly the polarization gradient were omitted, WL would be the energy density of deforma­
tion and polarization of a classical, linear, elastic dielectric extended to accommodate a
diatomic material. As it stands in (1), W L is the extension, to a diatomic material, of a
previous energy function in which the inclusion of the polarization gradient has been
shown to account for interesting, observed phenomena [2, 7, 8].

The total potential energy density, W, is the energy density ofdeformation and polariza­
tion augmented by the energy density of the Maxwell, electric self-field:

(2)

where eo is the permittivity of a vacuum and cp is the potential of the Maxwell self-field
EttS

, i.e.

The associated kinetic energy density is taken as

(3)

K = 1,2; j = 1,2,3, (4)

where pO) and p(2) are the mass densities of the two continua and the "comma to' notation
designates the differentiation with respect to time.

3. FIELD EQUATIONS AND BOUNDARY CONDITIONS

The field equations and boundary conditions, corresponding to the potential and
kinetic energy densities formulated in the preceding section, may be derived by means of an
extension ofa linear version of Toupin's [3] variational principle for the classical theory of
elastic dielectrics. The extension accounts for the contributions of the polarization gra­
dients, the two continua and the kinetic energy.

First we define an electric enthalpy density:

H = W-(eoEttS +p!1)+P!2)+q*u{)EttS (5)

i.e. the potential energy density diminished by the product of the Maxwell self-field and the
electric displacement. The inclusion of the term q*U{, where q* is a charge density, was
suggested by P. C. Y. Lee to accommodate applications to ionic crystals; i.e. q*U{ is the



372 R. D. MINDLIN

ionic, or atomic, polarization as distinguished from the electronic polarizations PIK).
When the ionic polarization is included in what follows, the superscript K = 1 identifies the
positive ion and K = 2 the negative ion.

Inserting (2) and (3) in (5), we find

(6)

In a body occupying a volume V bounded by a surface S separating V from a vacuum
V', the extension of Toupin's variational principle takes the form

8f
l1

dt ( (T-H)dV+ Ift' dt ( (flK)8uIK)+E?8PIK)+E?q*8undV
10 Jv" K 10 Jv

+ I fll dt i tlK)8u1K)dS = 0, K = 1,2, (7)
K to S

for independent variations of uIK), P1K) and qJ between fixed limits at times to and t l' In
(7), VI! V+ V', 11K

) and tlK
) are the external body forces and surface tractions on the

two continua and E? is the external electric field. Now,

where

(8)

) awL (K) ~ awL
E~K = E -, - ap\K)' i} - ap\K.l'

1 J.t

awL
T* ­ij-~'

Villi}
(9)

With the chain rule of differentiation, (8) becomes

K K

+ ~ {[Tl~)+(-l)KT:+:.J 8U(K)} . + ~ (E(~) 8P\K»).L... IJ IJ J,I f...J lj J ,I'

K K

Treating the remaining part of H in (6) similarly, we have, in V:

8H = -~ [T~~).+(-l)K(TI',.- n q*fIl .)J 8U(K)- ~(E(.K)+E~~).-fIl .\"'P~K)
L. 'J.' 'J.' J "t' .' J L. 1 '1.'"t' .11" 1

K K

+ ~ [e fIl .. - P~K) -( -1)Kq*u~K)]8f1l+ ~ {[Tl~) +(-I)KT:+:.] 8U(.K)} .l.J 0...,.... ,ll t.l 1,1 't' '- I) lJ ) ,I
K K

(10)

and, in V';

Further, from (4),

K K

(11)

(12)
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Inserting (10HI2) in (7) and applying the divergence theorem where appropriate, we find

"fll dt f [T~~). +(-I)"(T~. .- P' - q*m .) +(-I)"q* Ef! +!<.,,) - p(")u<''')] bu<.") d V
~ IJ,l IJ,I) 't' ,J } J J,lt )

K to V

+"ftl

dt f {(E<''') +EN - m .+ EiJ)bpl.") +[- em .. + p~".> +(-I)"q*u~"'>] bm} d Vi...J } 11.t't',} ) J O"".ll 1,1 1,1 ..,.,

K to V

- Lftl

dtf {[ni(T~'j) +( -1)"TO)- t(")] bU~")+ n;E!'j) bP~") +n;[ - eO[<p,i]
"10 S

+ P!,,) +q*( -1)"u~")] b<p} dS - fll dt r eO<p,ii d V = 0,
10 Jv'

where ni is the outward normal to Sand [<p,J is the jump in <P,i across S.
From (13), we have the Euler equations in V:

n~).+(- 1)"(T~. .- T'!' - q*m .) +!~") +(-I)"q* EO = p(")u<''')
lj,l 1),1 J "r.t J J J.lt'

EI.")+E~~).-m ·+Eo = 0
J IJ,t 't".J J '

and, in V':
<P,i; = 0;

(13)

(14)

(15)

(16)

and also the boundary conditions on S:

n;[1;'j) +(- 1)" TO] = t~"),

niE!'j) = 0,

n,{ -eO[<p,i] +PP)+P!2)+q*un = O.

As may be seen from (13), boundary conditions alternative to (16) are the specification of
u!"), P!,,) and <P, respectively.

4. CONSTITUTIVE EQUATIONS

We consider the constitutive equations for a crystal with NaCl-type lattice structure.
Such a crystal belongs to cubic class m3m (International) or 0h (Schoenflies) [9] with
generators [10]

(- ~ - ~ ~) (~ ~ ~) (~ ~ ~)
o 0 -1 0 1 0 0 -1 0

(17)

and, as illustrated in Fig. 2, comprises two, interpenetrating, f.c.c.lattices [11] each of which
has m3m symmetry. Owing to the first generator in (17) (the c~ntrosymmetry generator)
there can be no coefficients of odd rank and no products of symmetric and antisymmetric
variables in the quadratic function W L

• This reduces the interactions to those between
variables connected by full lines in Fig. 3; whereas the dashed line segments denote excluded
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FIG. 2. NaCl-type lattice.

interactions. The corresponding energy function is

W L = 1" (a"AP\")P\A)+b";' p\")pl;')+c~.;' S\~)S(;'l+2d";' Plk). SI;'l)
2 L. '} '} ,}kl }.' I,k ukl '} kl ,}kl lJ.') kl

",A

+ "(a*"u~p\") +d*"w,!,.pIK:l. )+la**u~u~ +c**w~m~.L. ,. '} lJ"j 2 " '} '}

"

"

FIG. 3. Interactions among strains. polarizations. relative displacement and relative rotation in a
diatomic. elastic, dielectric continuum with group m3m (Oh) material symmetry.

(18)
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where Pli!i) and Pli!il denote the symmetric and antisymmetric parts of P~~l, respectively.
We note that, in general,

(19)

(20)

and, from (17),

b'0il = bKA(jijkl +b'ti(ji}.(jkl +b1i((jik(jjl + (ju(j jk) + b~~((jik(j jl- (ju(j jk)'

c7jil = Cd'(jijkl + Cg(ji}.(jkl +c1i((jiAI + (jU(jjk)'

d7jil = dKA(jijkl +dg(ji}.(jkl +d44((jik(j jl +(ju(jjd,

where (jij (or (jijkl) is unity when its indices are alike and zero otherwise;

bK). = b~1-b~~-2b1i, cK). = c~1-cg-2c1i, dK). = d~1-dg-2d1L (21)

for c7ji, and d7ji, the abbreviated notation for pairs of indices, ij or kl has been used:

11 -> 1, 22 -> 2, 33 -> 3, 23 or 32 -> 4, 31 or 13 -> 5, 12 or 21 -> 6

and the same for b7ji, except that

32 -> 7, 13 -> 8, 21 -> 9.

It may be observed that material constants with superscripts KA = 11 or 22 denote interac­
tions within one of the two component continua whereas constants with superscripts
KA = 12 or 21 denote interactions between the two component continua.

From (9) and (18H21), we find the constitutive equations

ni) = cKO (jij + I (CK).(jijkISi7) +cg(jijSii) +2c1iSlf»
).

+ L (d).K(jijklP"k + d1i(jijPi~k+2di4Pl;!i),
).

- E~K) = La~1 P~).) +a*Kuj,
).

E(K) - bKO~ +" (bK).~ P().)+bK). ~ p().) t-2bK).P().) +2bK).P().) )ij - Uij L. Uijkl I,k 12Uij k,k' 44 (j,i) 77 [j,i)
).

+2d*KWU + L(dK).(jijkISW +dg(jijSW+ 2d1iSljl),
).

T'!' = " a*).pl.).) +a**u'!'} L..} }'
).

We shall assume that, in the initial state, i.e. when

there is no resultant force across any surface--exterior or interior. That is,

(22)

(23)
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Then, from the first of (16),

so that, from the first of (22),

R. D. MINDLIN

(24)

Accordingly, from (23) and (24), in the initial state:

but there is a self-equilibrated

in each component continuum.

5. SURFACE ENERGY OF DEFORMATION AND POLARIZATION

In a state of equilibrium, the total energy in V" is, from (2),

jf" = f WL dV+1 f EoqJ.iqJ.i d V.
Jv Jv•

We can write W L in the form

2WL = "(T!~)S!K) - E!K)p!K) +E!K)P!K» + T'!'u'!' + T'!'.w'!'.+ " bKO P\K)+C20(S\2)_S\1»L.. I) I) l I l} J.l I I lJ I) L.. l,f II II'

K K

Then, by the same procedure as that employed in arriving at (13),

t W L dV = -1~t ([T~j!i+( -1t(Tij,i- Tj)]U)K)+(EJK)+E~j!i)PJK)}dV

+1 Lf ni{[Tlj) +(-ltT ij]u)K) + E~jlPY)} dS
K S

Also,

(25)

(26)

f qJ,iqJ.i d V = - f qJ.iiqJ d V+ f n••qJ,JqJ dS. (27)Jr Jr S

Inserting (26) and (27) in (25) and applying the equations of equilibrium [i.e. (14) withun = 0], in the absence of external forces (fy), EJ = 0), we find

2if" = - L f [(-ltq*qJ.iuIK)+qJ,;PIK)+(P~~l+q*uti)qJ]dV
K Jv

+ Lf ni{[Tlj)+( -ltTt]u)K)+E~j)PY)+Eo[qJ.JqJ}dS
K S

+ Lf ni(bKO plK
) + c2 0ur> dS.

K S
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Now,

f p!'<)m dV = - f m .p!K) d V+ f n.P!K)m dS1,1't' r,t 1 1 1 "f' ,

V V S

Hence,

21f' = L f ni{[Tlj)+( -ltTU]u~K)+Elj)PY)+(80[cp,J-PlK)-q*ut)cp} dS
K S

+ L f ni(bKOPIK) +C20ut) dS.
K S

From (16), the first integral in (28) vanishes if the boundary is entirely free. Then

2 if" = Lf n,(bKOPIK) +C20Ut) dS.
K S

Accordingly, the surface energy of deformation and polarization, per unit area, is

W S = !n;[blopp)+b2°PI2)+c2°u1]s.

6. WAVE MOTION

377

(28)

(29)

The equations of motion in terms of uIK
), P1K

) and cp are obtained by substituting the
constitutive equations (22) into the field equations (14), with the result, for each K,

" [CKAc5"klU(lAk)' + CKl),ZU\),). + cK4A4(dN +u!),)·)]L... 1), I 1,1) J,Il 1,1)
).

L [d AK I: P().) d).K p(A) dAK (P()') P(A»)]+ U"kl lk'+ 12 ...+ 44 ... + ...I) • I 1,1) l,U 1,1)

A

+( -It L [d*A(PZli-Pl~j)-( -1)Ac**(uj~li-ul~j)]
A

- (_I)K[a*1 p(l) +a*2P(Z) +a**(u(2)- U(I») +q*m ._q*Et?] +f(K) = p(Kld.K)
J J J J ." oj J J Jott'

L [b KA-' p().) bKAp().) bKA(P(A) P().») bKA(P(A) P().»)]+ u"kl lk'+ 12 ...+ 44 ... + ... + 77 ... - ...I) • I 1,1) J,U 1.1) J.u 1,1)

A

(30)

_a lK p\ll_a2K p(2)_a*K(d2 )_u(l))_m ·+EO= 0
11 J 11 J J J ." oj J '

- 80CP,ii +PlY + Pl~) + q*(ul~) - ulY) = O.

The essential features of wave motion are revealed by an examination of plane waves
in, say, the Xl' or (100), direction:

(31 )

and fJK) = EJ = O. With these functions, the five equations (30) reduce to those for
longitudinal waves if j = 1 and transverse waves if j = 2 or 3. Thus:
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Longitudinal (j = 1)

e11 u(1 ) +e I2 ul2) +d 11 p(1) +d21 p(2) +a*lp(1)+a*2pl2)+a**(ul2) ul 1J )+q*m11 1,11 11 1,11 11 1,11 11 1,11 1 1 1 - 1 "",1

= p(1)ui1)"

e21 u(1) +e22u(2) +d I2 p(1) +d22p(2) -a*lp(1)_a*2p(2)_a**(u(2)_u l1 »)_q*m
11 1,11 11 1,11 11 1,11 11 1,11 1 1 1 1 "".1

= p(2)ui~l" (32)

d11 ul 1) +dI2U(2) +b 11 p(1) +b I2 p(2) _allP(1)_aI2p(2)_a*l(ul2)_u(1»)_m
11 1.11 11 1,11 11 1,11 11 1,11 11 1 11 1 1 1 .,..,1

d21 U(l) +d22U(2) +b21 p(1) +b22 p(2) _a21p(1)_a22pl2J_a*2(u(2)_u(1»)_m
11 1,11 11 1,11 11 1,11 11 1,11 11 1 11 1 1 1 "",1

Pi1,)1 +Pi~)1 +q*(Ui~)1 -ui1
,)!l-£O({J,11 = O.

Transverse (j = 2)

(d~ -e**)u~I,)11+(eU + e**)u~~~ 1 +(dU _d*1 )P~~~ 1 + (dU -d*2)p~~L

+a*lp~I)+a*2p~2)+a**(u~2)_u~I»)= p(1)U~I,:t,

(d~ +e**)u~I,~ 1 +(d~ - e**)u~~)11 +(dU +d*I)P~I,L+(dU +d*2)p~~L

_ a* 1p~1) _ a*2 p~2) _ a**(u~2) - u~1)) = p(2)u~~lt,

(dU-d*I)U~I,L +(dU+d*I)U~~L +(b~~+bq)p~I.L +(bU+bn)p~~L

-agp~I)-alip~2)-a*l(u~2)-uil)) = O.

(dU-d*2)U~I,L +(di~+d*2)U~~)11 +(bU+b~~)p~I,L +(bU+b~~)P~~L

-anp~I)-anp~2)-a*2(u~2)-u~I») = O.

= 0,

= 0,

(33)

It may be noted that the Maxwell self-field is coupled to the mechanical displacement in
the longitudinal waves, but not in the transverse waves.

Upon substituting (31) in (33) and eliminating A\;) and B~K), we find the dispersion
relation for transverse waves:

p(1)w1_a** -leU -e**J¢1 a**-(eli+e**l¢1 a*1-(dU-d*1)~2 a*2 -(dU -d*2l~2
I

a**-(eU+e**J¢1 p(2 Iwl_ a** -leU -e**l¢1 -a*'-(dli+d*')¢1 -a*1-(dii+d*2J~2!
~ = = o.I

a*' -(dll-d*1 l¢1 -a*'-(dli+d*lJ~2 -all-(bU+bQJ¢1 -a:i-(bU+b~~)~21
a*l-(dU _d*1)~2 -a*' -(dU +d*2)¢1 -ail-(bU +b~~)¢1 -aii-(bU+bnJ¢1 (34)

This is a quartic equation in ~2. Of the four branches, two are real: one acoustical and
one optical, as may be verified by showing that one real branch passes through ~ = 0,
w = 0 and one through ~ = 0, w # O. We find, in fact,

lim ~t = lim [leU + d~ + 2d~)~2 - (p(1) + pl2 l )w2JD,
w.;-o w.~-o

where

all all a*1
II II

D= a 21 a2l a*211 11

a*1 a*2 a**
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Hence, there is a transverse acoustical branch with the limiting, low frequency behavior

(35)

It may be seen, from (35), that the usual low frequency shear stiffness, C44 ' is given by

C44 = d.i+di+2di,
i.e. the sum of the shear stiffnesses of the two component continua augmented by twice
the intercomponent shear stiffness. Further

~~~~t = w2[p(1)p(2)w2(aUaii-anaiD-(p(1)+rP1 )D].

Thus, there is a transverse optical branch with limiting (infrared absorption) frequency

(36)

where p is the reduced density:

For the longitudinal waves, substitution of (31) in (32) and elimination of AlK
), BlK

)

and C yields a dispersion relation the same as that for transverse waves except that the
subscript 44 is changed to 11, the constants d*K, c** and b;~ are zero, the constants a'11
are replaced by a'11 + co 1, the constants a*K are replaced by a*K + q*co 1 and a** is
replaced by a** + (q*)2 cO 1. Subject to these changes, the low frequency behavior of the
longitudinal acoustical branch and the long wave limit of the longitudinal optical branch
are given by (35) and (36), respectively. Note that the constants coa'11 are reciprocal
dielectric susceptibilities, as may be seen from the expression for E~K) in the constitutive
relations (22). Note, also, that q* is zero in a non-ionic crystal.

It should be observed that the real parts of the optical branches have no valid role in
solutions, of the equations of motion, in which optical and acoustical modes are coupled,
say through boundary conditions. The frequencies of the two types of mode must be the
same, when they are coupled, but any frequency on a real segment of an optical branch is
associated with a wave length, on an acoustical branch, that is too short to be within the
range of validity of the continuum theory. In such coupled situations, there is an upper
limit of frequency, set by the wave length limitation of the acoustic branches, to which
the solution is restricted. Below such a frequency, the optical branches are imaginary or
complex and correspond to displacements and polarizations confined essentially to the
neighborhood of the boundary with exponential, or oscillating exponential, spatial decay
into the interior.

The special field equations governing the behavior of the continuum at infinite wave
length and high frequencies may be obtained from (30) by omitting all spatial derivative
terms, after employing (3), with the result:

a*1pp)+a*2p~2)+a**(ul2)-UP)-q*E~S= p(1)u1.1t l,
-a*1pp)-a*2Pl2)-a**(ul2)-u~1)+q*E~s = p(2)ug~,

aUPl1)+anPl2)+a*1(ul2)-ull)-E~s = 0,

anPl1)+aiiPl2)+a*2(ul2)-ul1»)-E~s = o.
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These are equivalent to the equations, given by Born and Huang [4], from which a
dispersion formula for the dielectric constant is obtained. Thus, the weighted difference
between the first two equations gives

-put" = a*lp~l)+a*2Pl2l+a**U{-q*E['1S

and the second two equations yield

Pp' = [(an-aWE['1s-(ana*1 -afla*2)urJ/(anan-anaW,

p!2l = [(all-ali)E['1s -(alla*2 -a}ia*l)urJ/(allaii -aliaW.

Substituting the latter two in the former and defining the total polarization density as

Pi = PP'+P!2)+q*U{,

we find equations of the same form as (7.1) and (7.2) in Born and Huang [4]:

putt! = /3 I I U{ + f3 12Et1S,

Pi = f32I U{+/322 Eiws,
where

/322 = (all +an - 2aln/(allaii -aliail),

7. ONE-DIMENSIONAL LATrICE

The purpose of this section is to show, for the one-dimensional, longitudinal case, that
the equations of motion (32), exhibited in the preceding section, are the long wave limit
of the equations of motion of an NaCI-type lattice of the kind devised by Cochran [5]
based on the Dick-Overhauser [6] shell model of the atom: a core, comprising the nucleus
and inner electrons, surrounded by a shell of outer electrons-with the electronic polar­
ization proportional to the relative displacement of the shell with respect to the core. In
addition to the intra-atomic interaction producing the electronic polarization, certain
interatomic core~core, shell~shell and core~shell interactions are taken into account.
The one-dimensional NaCI-type lattice is most conveniently represented by two lines of
alternating atoms (positive and negative ions, in the case of an ionic crystal) with one atom
of each type at each lattice site, as shown in Fig. 4, where the two types of atom are
identified by the digits 1 and 2. Nearest neighbor interactions between unlike (adjacent)
atoms in each line and next nearest neighbor interactions between like atoms in the two
lines are those taken into account. but no interactions between the unlike atoms at the
same site are considered. With each of p and q equal to 1 or 2, the force constants of the
interactions are denoted by cxp for the intra-atomic core-shell interactions and f3pq, rpq' i5 pq

for the core--core, core~shell, and shell-shell interatomic interactions, respectively, between
like atoms for p = q and unlike atoms for p # q. We note that /3pq = f3qp and (5 pq = i5qp

but }'pq # rqp' The two lines of atoms are taken to be parallel to the x I axis with the atom
sites at Xl = /la, where /l is a positive or negative integer. The displacements of the cores
and shells of the atoms at Xl = /la are denoted by u~J<) and s~J<), where K = 1. 2 to designate
the atoms of types 1 and 2 (1 for the positive ion and 2 for the negative ion. in the case
of an ionic crystal).
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n-l n n+l

I~._---"-a__~ I~E__-,,-a_~.I

FIG. 4. One-dimensional NaCl-type lattice of shell-model atoms.
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The equation of motion of the nth atom of type 1 is obtained by equating its inertia
force to the sum of the forces on its core and shell exerted by the cores and shells of the
two nearest neighbor (unlike) atoms, the two next nearest neighbor (like) atoms and the
Maxwell, electric self-field at XI = na:

f311(U~IJI-U~I))+Yll(S~IJI-S~1)+U~IJI-U~1))+bll(S~IJI-S~I))

- f3IIM1)- U~I~ 1)- Yll(U~1)- U~I~ 1+s~1) - S~I~ 1)- bll(S~1) - S~I~ 1)

+ f3 dU~2J 1 - u~1))+ YdS~2J 1 - U~I»)+ Y21 (U~2J 1 - s~1)) +b12(S~2J 1 - S~I»)

- f3 du~1) _U~2~ d- Ydu~1) - S~2-.! d - Y2ds~1) - U~2~ d -bds~1) - S~2~ d - q*E~S

(37)

Similarly, for the shell, alone, of the type 1 atom:

IY.I(U~I)-S~I»)+}'II(U~IJ1-S~1))+bll(S~IJ 1_S~1))_YII(S~I)_U~I~ 1)-bll(S~1)-s~l~ I)

+Y21(U~2Jl-S~1))+bI2(S~2JI-S~I))-Y2ds~I)-U~2~d-bds~I)-S~2~d+qEZ[S = 0, (38)

where q is the electronic charge and the mass of the shell is neglected.
We adopt the following definitions of the second central difference operation, the

electronic polarization densities and the mass densities:

(39)

K = 1,2,



382 R. D. MINDLIN

and also make the following identifications:

an = «(XI +2}'I1 +2YZI +2b IZ )a3q-Z, bn = aliaz/2 = blza5q-Z,

bll = bll a5q-Z,

ell = (PII +2YII +bIl)a- l,

dll = (}'II +bIl)aZq-l,

Then (37) and (38) can be written as

eli = a**az/2 = (PIZ+YIZ+YZI +(j12)a- l
,

dil = a*zaz/2 = (YI2+()uJa2q-l,

dli = -a*l a2/2 = (}'ZI +<)uJa2q-l.

(40)

el ldZu~l) + el idZu~Z) +dlldzp~1) +dijdzp~2) + a*1 p~1)

+ a*z P~Z) +a**(u:,Z) _ u~1)) _ q*E~fS = p(1 )U~.lt:,

dlldZu~1) +dlidZu~Z) + blldzp~1) + blidzP~Z) - all p~1)

-alip~Z)-a*l(u~2)-u~I))+E~fS= o.

(41 )

(42)

In the same way, for the type 2 atom:

d ld2U~1) + didZu~Z) +dlidzp~1) +dgdzP~Z) _ a* 1p~1)

- a*z P~Z) _ a**(u~2) _ u~1)) +q*E~s = p(Z)u~:/t.

dijdzu~1) + dndZU~Z) + bijdzp~1) + bgdzp~2) - aijp~l)

-anp~ZI-a*Z(u~ZI_u~1))+E~fS = 0,

(43)

(44)

where, in addition to (39) and (40), we identify:

(45)
aii = «(Xz +2}'22 +2Y12 +2i5da3q -Z. bn = (jzza 5q-z.

di = (Pzz+2}'zz+6zzja- l , dn = (Y22+<)zzja Zq-l.

Also, as in [7J, the charge equation may be written as

-£o(Lo+GOn+o_[p~I)+p~Z)+q*(u~Z)-u~1))]= O. (46)

where 0+ and iL are the Taylor series expansions of the derivative Cjcx I In terms of
forward and backward differences. respectively.

In the long wave limit,

(47)
dZj~ ---> oz.f(xd/oxi. o± ---> %x l .

Then (41), (43), (42), (44) and (46), in that order, reduce to the five equations (32) in the
order given.

Alternatively, in the long wave, low frequency limit, we have. in addition to (47),

Then, with the notations

U
I

= uil ) = uiZ) -!PI = Pil) = PiZ). p = p(I)+p(2),

all = ±(all + aii + 2ali), bll = ±(bl: + Hi + 2bl i),
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the sum of (41) and (43), the sum of (42) and (44) and, finally, (46) become, respectively,
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(48)

CIIUI,II + dllPl,ll = PUI,II'

dllul,ll +bllPl,ll -allP1-CfJ,l = 0,

- BoCfJ,l1 + Pl,l = 0.

These are the equations found in [2] for longitudinal waves in a simple (as opposed to
compound) dielectric continuum, with symmetry m3m, when the polarization gradient is
taken into account. Thus, the long wave limit of the equations of the one-dimensional,
diatomic lattice yields the equations for longitudinal waves in the compound continuum
when no restriction is placed on the frequency; whereas the long wave, low frequency
limit yields the equations of the simple continuum. In a three-dimensional treatment,
Askar et al. [12] showed the connection between the equations of the NaCI-type lattice
of polarizable atoms and the equations in [2]. A similar investigation, not restricted to
low frequencies, would, presumably, reveal the connection with the three-dimensional
continuum equations of the present paper.
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A6cTpaKT-0606111aIOTcH ypaBHeHI1H nOIlH 11 rpaHI1'1HBe YCJIOBI1H KOHTI1HyaJIbHoll TeOp1111 ynpyfl1x
.!ll1'meKTpIIKOB, Y'lI1TblBalOlllell Blll1HHl1e rpa.!ll1eHTa IIOJIHpl1,aUI1I1, C uellblO IIpl1MeHeHI1H ee K CIlOlKHOMY
MaTeplIaJIy. nOJIY'IaeTClI !\JopMYlla .!lJIlI IIoBepxHocTHOll JHeprl111 Ae!\JopMaul1l1 11 IIOJIlIpl1,aUl111 Ky61I'I­
eCKoro KpI1CTaIlJIa. PeWeHl1e ,aAa'll1 nJIOCKI1X BOJIH IIPI1BOAI1T K OTOlKAeCTBeHl11O OIITI1'1eCKI1X npOAOJIbHblX
11 IIOnCpC'IHbIX BCTBClI, a TaKlKe aKYCTll'1eCKIIX, AJIlI 1aBI1CI1MOCTI1 .!ll1cncpcl1l1. CTPOI1TCH OAHoMcpHaH
MO.!leJIb Kpl1cTallJII1'1ccKoll CCTI1 Tl1na NaCI o6ollo'le'lHoll MOAeJII1 aTOMOB. YpaBHCHl1l1 .!lBl1lKeHI1H )Toll
MOACJII1, BblpalKeHHbIC B KOHC'IHbIX pa,HocTHX, COOTBCTCTBYlOl ypaBHCHl1l1M cnJIowHoll TeOpl111, B CMblClle
OrpaHI1'1CHI1H .!lIlI1Hbl BOJIHbI, 6e, Orp3HII'IeHI111 HI1,Koll '1aCTOTbI.


